Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(738): eadg3665, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478631

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the death of upper (UMN) and lower motor neurons (LMN) in the motor cortex, brainstem, and spinal cord. Despite decades of research, ALS remains incurable, challenging to diagnose, and of extremely rapid progression. A unifying feature of sporadic and familial forms of ALS is cortical hyperexcitability, which precedes symptom onset, negatively correlates with survival, and is sufficient to trigger neurodegeneration in rodents. Using electrocorticography in the Sod1G86R and FusΔNLS/+ ALS mouse models and standard electroencephalography recordings in patients with sporadic ALS, we demonstrate a deficit in theta-gamma phase-amplitude coupling (PAC) in ALS. In mice, PAC deficits started before symptom onset, and in patients, PAC deficits correlated with the rate of disease progression. Using mass spectrometry analyses of CNS neuropeptides, we identified a presymptomatic reduction of noradrenaline (NA) in the motor cortex of ALS mouse models, further validated by in vivo two-photon imaging in behaving SOD1G93A and FusΔNLS/+ mice, that revealed pronounced reduction of locomotion-associated NA release. NA deficits were also detected in postmortem tissues from patients with ALS, along with transcriptomic alterations of noradrenergic signaling pathways. Pharmacological ablation of noradrenergic neurons with DSP-4 reduced theta-gamma PAC in wild-type mice and administration of a synthetic precursor of NA augmented theta-gamma PAC in ALS mice. Our findings suggest theta-gamma PAC as means to assess and monitor cortical dysfunction in ALS and warrant further investigation of the NA system as a potential therapeutic target.


Assuntos
Esclerose Amiotrófica Lateral , Doenças do Sistema Nervoso Autônomo , Dopamina beta-Hidroxilase/deficiência , Doenças Neurodegenerativas , Norepinefrina/deficiência , Humanos , Camundongos , Animais , Esclerose Amiotrófica Lateral/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Doenças Neurodegenerativas/metabolismo , Medula Espinal/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Superóxido Dismutase/metabolismo
2.
Prog Neurobiol ; 200: 101972, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33309802

RESUMO

Amyotrophic lateral sclerosis (ALS) arises from the combined degeneration of motor neurons (MN) and corticospinal neurons (CSN). Recent clinical and pathological studies suggest that ALS might start in the motor cortex and spread along the corticofugal axonal projections (including the CSN), either via altered cortical excitability and activity or via prion-like propagation of misfolded proteins. Using mouse genetics, we recently provided the first experimental arguments in favour of the corticofugal hypothesis, but the mechanism of propagation remained an open question. To gain insight into this matter, we tested here the possibility that the toxicity of the corticofugal projection neurons (CFuPN) to their targets could be mediated by their cell autonomous-expression of an ALS causing transgene and possible diffusion of toxic misfolded proteins to their spinal targets. We generated a Crym-CreERT2 mouse line to ablate the SOD1G37R transgene selectively in CFuPN. This was sufficient to fully rescue the CSN and to limit spasticity, but had no effect on the burden of misfolded SOD1 protein in the spinal cord, MN survival, disease onset and progression. The data thus indicate that in ALS corticofugal propagation is likely not mediated by prion-like mechanisms, but could possibly rather rely on cortical hyperexcitability.


Assuntos
Esclerose Amiotrófica Lateral , Animais , Modelos Animais de Doenças , Camundongos , Neurônios Motores , Príons , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
3.
Hum Mol Genet ; 29(5): 766-784, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31919497

RESUMO

By using the Cre-mediated genetic switch technology, we were able to successfully generate a conditional knock-in mouse, bearing the KIF2A p.His321Asp missense point variant, identified in a subject with malformations of cortical development. These mice present with neuroanatomical anomalies and microcephaly associated with behavioral deficiencies and susceptibility to epilepsy, correlating with the described human phenotype. Using the flexibility of this model, we investigated RosaCre-, NestinCre- and NexCre-driven expression of the mutation to dissect the pathophysiological mechanisms underlying neurodevelopmental cortical abnormalities. We show that the expression of the p.His321Asp pathogenic variant increases apoptosis and causes abnormal multipolar to bipolar transition in newborn neurons, providing therefore insights to better understand cortical organization and brain growth defects that characterize KIF2A-related human disorders. We further demonstrate that the observed cellular phenotypes are likely to be linked to deficiency in the microtubule depolymerizing function of KIF2A.


Assuntos
Comportamento Animal , Cinesinas/fisiologia , Malformações do Desenvolvimento Cortical/patologia , Mutação , Neurônios/patologia , Proteínas Repressoras/fisiologia , Animais , Masculino , Malformações do Desenvolvimento Cortical/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
4.
Nat Commun ; 10(1): 2129, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086189

RESUMO

De novo heterozygous missense variants in the γ-tubulin gene TUBG1 have been linked to human malformations of cortical development associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning, disrupting the locomotion of new-born neurons but without affecting progenitors' proliferation. We further demonstrate that pathogenic TUBG1 variants are linked to reduced microtubule dynamics but without major structural nor functional centrosome defects in subject-derived fibroblasts. Additionally, we developed a knock-in Tubg1Y92C/+ mouse model and assessed consequences of the mutation. Although centrosomal positioning in bipolar neurons is correct, they fail to initiate locomotion. Furthermore, Tubg1Y92C/+ animals show neuroanatomical and behavioral defects and increased epileptic cortical activity. We show that Tubg1Y92C/+ mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of cortical malformations.


Assuntos
Malformações do Desenvolvimento Cortical/genética , Microtúbulos/metabolismo , Neurogênese/genética , Neurônios/fisiologia , Tubulina (Proteína)/genética , Animais , Comportamento Animal , Movimento Celular/genética , Centrossomo/metabolismo , Córtex Cerebral/anormalidades , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Modelos Animais de Doenças , Embrião de Mamíferos , Epilepsia/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Técnicas de Introdução de Genes , Predisposição Genética para Doença , Células HeLa , Humanos , Microscopia Intravital , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Microtúbulos/genética , Mutação de Sentido Incorreto
5.
Hum Mol Genet ; 27(2): 224-238, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29077851

RESUMO

Genetic findings reported by our group and others showed that de novo missense variants in the KIF2A gene underlie malformations of brain development called pachygyria and microcephaly. Though KIF2A is known as member of the Kinesin-13 family involved in the regulation of microtubule end dynamics through its ATP dependent MT-depolymerase activity, how KIF2A variants lead to brain malformations is still largely unknown. Using cellular and in utero electroporation approaches, we show here that KIF2A disease-causing variants disrupts projection neuron positioning and interneuron migration, as well as progenitors proliferation. Interestingly, further dissection of this latter process revealed that ciliogenesis regulation is also altered during progenitors cell cycle. Altogether, our data suggest that deregulation of the coupling between ciliogenesis and cell cycle might contribute to the pathogenesis of KIF2A-related brain malformations. They also raise the issue whether ciliogenesis defects are a hallmark of other brain malformations, such as those related to tubulins and MT-motor proteins variants.


Assuntos
Cílios/genética , Cinesinas/metabolismo , Malformações do Desenvolvimento Cortical/genética , Proteínas Repressoras/metabolismo , Animais , Encéfalo/metabolismo , Ciclo Celular/genética , Cílios/fisiologia , Células HeLa , Humanos , Cinesinas/genética , Malformações do Desenvolvimento Cortical/metabolismo , Camundongos , Microcefalia/metabolismo , Microtúbulos/metabolismo , Neurogênese , Proteínas Repressoras/genética , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...